

EMC TEST REPORT

For

Deshun Smart Technology Co., Ltd.

LED exit emergency light

Test Model: DS-EL-01M

Additional Models : please refer to Model list

Prepared for : Deshun Smart Technology Co., Ltd.

Address : No. 39, Dongqi Highway, Zhangjiagang City, Jiangsu, China

Prepared by : Shenzhen Southern LCS Compliance Testing Laboratory Ltd. Address : 101-201, No.39 Building, Xialang Industrial Zone, Heshuikou

Community, Matian Street, Guangming District, Shenzhen, China

Report No.: LCS220105116BE

Tel : (+86)755-29871520 Fax : (+86)755-29871521 Web : www.LCS-cert.com

Mail : webmaster@LCS-cert.com

Date of receipt of test sample : March 05, 2022

Number of tested samples : 1

Serial number : Prototype

Date of Test : March 05, 2022 - May 31, 2022

Date of Report : May 31, 2022

EMC TEST REPORT

EN IEC 55015:2019+A11:2020

Emission - Electrical lighting and similar equipment

EN 61547:2009

Equipment for general lighting purposes - EMC immunity requirements

Report Reference No...... LCS220105116BE Date of Issue...... May 31, 2022 Testing Laboratory Name.....: Shenzhen Southern LCS Compliance Testing Laboratory Ltd. 101-201, No.39 Building, Xialang Industrial Zone, Heshuikou Address....: Community, Matian Street, Guangming District, Shenzhen, China. Full application of Harmonised standards Testing Procedure....: Partial application of Harmonised standards Other standard testing method Applicant's Name....: **Deshun Smart Technology Co., Ltd.** No. 39, Dongqi Highway, Zhangjiagang City, Jiangsu, China Address....: **Test Specification:** Standard....: EN IEC 55015:2019+A11:2020 EN IEC 61000-3-2:2019+A1:2021 EN 61000-3-3:2013+A1:2019+A2:2021 EN 61547:2009 Test Report Form No...... SLCSEMC-2.3

Shenzhen Southern LCS Compliance Testing Laboratory Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Southern LCS Compliance Testing Laboratory Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Southern LCS Compliance Testing Laboratory Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

TRF Originator.....: Shenzhen Southern LCS Compliance Testing Laboratory Ltd.

Equipment Under Test..... LED exit emergency light

Trademark.....: N/A

Test Model/Type.....: DS-EL-01M

Master TRF...... Dated 2016-08

Rating......: 220-240VAC, 50/60Hz, Emergency power:1.5W

Replaceable battery: LiFePO4 6.4V 1600mAh

PASS Results:

Amy Liu / Engineer

Compiled by: Supervised by: Approved by:

Cherry Chen / Technique Director

Cherry Chen

Dm Gu / Manager

EMC - TEST REPORT

Test Report No...... LCS220105116BE

Applicant		•
Address:	No. 39, Dongqi Highway, Zha	ngjiagang City, Jiangsu, China
Telephone:	I mine 好	
Fax		
Manufacturer	Deshun Smart Technology (Co., Ltd.
Address:	No. 39, Dongqi Highway, Zha	ngjiagang City, Jiangsu, China
Telephone:	1	
Fax:		
Factory:	Deshun Smart Technology (Co., Ltd.
Address:	No. 39, Dongqi Highway, Zha	ngjiagang City, Jiangsu, China
Telephone:	1	
Fax:		

The applicant and manufacturer information, product name, model, trademark and other information in this report are all provided by the applicant, and this laboratory is not responsible for verifying its authenticity.

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

TET LCS Testing Lab

ENVIRONMENTAL CONDITIONS

The climatic conditions during the test are within the limits specified by the manufacturer for the operation of the EUT and the test equipment. the climatic conditions during the test were in the following Limits:

Ambient temperature	15℃ - 30℃
Relative Humidity air	30% - 60%
Atmospheric pressure	86 kPa - 106 kPa

Climate values will be recorded and recorded separately if specifically required in the base standard or application product/product series standard.

POSSIBLE TEST CASE VERDICTS

Test cases does not apply to test object	N/A
Test object does meet requirement	P(Pass) / PASS
Test object does not meet requirement	F(Fail) / FAIL
Not measured	N/M

DEFINITION OF SYMBOLS USED IN THIS TEST REPORT

Indicate that the conditions, standards or equipment listed is applicable to this report / test / I	ort / test / EU i
---	-------------------

Indicate that the conditions, standards or equipment listed is not applicable to this report / test / EUT.

REVISION HISTORY

Revision	Issue Date	Revision Content	Revised by
000	May 31, 2022	Initial Issue	-

Remark: 000): "---"

Scan code to check authenticity.

TABLE OF CONTENTS

1.	. GENERAL INFORMATION	6
	1.1. General Description of The Item(s)	6
	1.2. Operating Mode(s) Used of Tests	7
	1.3. Support / Auxiliary Equipment for The EUT	7
	1.4. Description of Test Facility	7
2.	STATEMENT OF THE MEASUREMENT UNCERTAINTY	8
3.	. MEASURING DEVICES AND TEST EQUIPMENT	9
4.	VERDICT SUMMARY SECTION	11
	4.1. Standard(s)	11
	4.2. Overview of Results	12
5.	5. EMISSION TESTS	13
	5.1. Conducted Disturbance	13
	5.2. Radiated Disturbance (9KHz - 30MHz)	15
	5.3. Radiated Disturbance (30MHz - 1GHz)	16
	5.4. Harmonic Current	17
	5.5. Voltage Fluctuations & Flicker	18
6.	S. IMMUNITY TESTS	19
	6.1. Performance Criteria	19
	6.2. Electrostatic Discharge	20
	6.3. Radio-Frequency Electromagnetic Fields	21
	6.4. Electrical Fast Transient / Burst	22
	6.5. Injected Currents (Radio-Frequency Common Mode)	
	6.6. Surge	24
	6.7. Voltage Dips and Short Interruptions	25
A	ANNEX A - TEST RESULTS	26
Α	NNEX B - TEST PHOTOS	46
Α	NNEX C - EXTERNAL AND INTERNAL PHOTOS OF THE EUT	50

1. GENERAL INFORMATION

1.1. GENERAL DESCRIPTION OF THE ITEM(S)

Equipment Under Test	LED exit emergency light
Test Model/Type	DS-EL-01M
Additional Models/Type	See Model list
Description of Model difference	-
Rating	See Model list
Mounting position	 □ Table top equipment □ Wall /Ceiling mounted equipment □ Floor standing equipment □ Hand-held equipment ☑ Other
Non-restricted ELV lamps	☐ Yes ☐ No

Information of the Equipment Under Test(EUT)

The EUT is general luminaires which intended for residential use. the product contains electronic control circuits, and no component susceptible to magnetic fields.

Model No.	Rating	Battery
DS-ES-01M	220-240V~, 50/60Hz, ta.40℃,	IFR 18650-1.6Ah 6.4V
g Lab	Emergency power:1.5W, IP20	1600mAh
DS-ES-02M	220-240V~, 50/60Hz, ta.40℃,	IFR 18650-1.6Ah 6.4V
V	Emergency power:1.5W, IP20	1600mAh
DS-ES-03M	220-240V~, 50/60Hz, ta.40℃,	IFR 18650-1.6Ah 6.4V
	Emergency power:1.5W, IP20	1600mAh
DS-ES-04M	220-240V~, 50/60Hz, ta.40℃,	IFR 18650-1.6Ah 6.4V
	Emergency power:1.5W, IP20	1600mAh
DS-ES-05M	220-240V~, 50/60Hz, ta.40℃,	IFR 18650-1.6Ah 6.4V
	Emergency power:1.5W, IP20	1600mAh
DS-ES-06M	220-240V~, 50/60Hz, ta.40℃,	IFR 18650-1.6Ah 6.4V
	Emergency power:1.5W, IP20	1600mAh
DS-ES-01S	220-240V~, 50/60Hz, ta.40℃,	IFR 18650-1.6Ah 6.4V
上。	Emergency power:1.5W, IP20	1600mAh
DS-ES-02S	220-240V~, 50/60Hz, ta.40℃,	IFR 18650-1.6Ah 6.4V
	Emergency power:1.5W, IP20	1600mAh
DS-ES-03S	220-240V~, 50/60Hz, ta.40℃,	IFR 18650-1.6Ah 6.4V
	Emergency power:1.5W, IP20	1600mAh
DS-ES-04S	220-240V~, 50/60Hz, ta.40℃,	IFR 18650-1.6Ah 6.4V
	Emergency power:1.5W, IP20	1600mAh
DS-ES-05S	220-240V~, 50/60Hz, ta.40°C,	IFR 18650-1.6Ah 6.4V
	Emergency power:1.5W, IP20	1600mAh
DS-ES-06S	220-240V~, 50/60Hz, ta.40℃,	IFR 18650-1.6Ah 6.4V
	Emergency power:1.5W, IP20	1600mAh

for more information refer to client's DoC letter.

Page 7 of 56 Report No.: LCS220105116BE

1.2. OPERATING MODE(S) USED OF TESTS

During the tests, the following operating mode(s) has(have) been used.

Operating Mede	On systimate Made also swinting	Used for testing	
Operating Mode	Operating Mode description	Emission	Immunity
1	Lighting on mode		
2	Charging	\boxtimes	\boxtimes
3	Discharging	\boxtimes	\boxtimes
4	Full load		

1.3. SUPPORT / AUXILIARY EQUIPMENT FOR THE EUT

EUT has been tested using the following auxiliary equipment:

Auxeq	Model/Type	Manufacturer	Supplied by

1.4. DESCRIPTION OF TEST FACILITY

Test Location 1	Shenzhen Southern LCS Compliance Testing Laboratory Ltd. 101-201, No.39 Building, Xialang Industrial Zone, Heshuikou Community, Matian Street, Guangming District, Shenzhen, China. CNAS Registration Number is L10160.
Test Location 2	Shenzhen LCS Compliance Testing Laboratory Ltd. 101, 201 Building A and 301 Building C, Juji Industrial Park, Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, Guangdong, China. NVLAP Accreditation Code is 600167-0. CNAS Registration Number is L4595.
Date of receipt of test item	March 05, 2022
Date(s) of performance of test	March 05, 2022 - May 31, 2022

Note: Radio-Frequency Electromagnetic Field (RS) Test Subcontract to Shenzhen LCS Compliance Testing Laboratory Ltd for Testing.

2. STATEMENT OF THE MEASUREMENT UNCERTAINTY

The data and results referenced in this document are true and accurate. the reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. the measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods - Part 4: Uncertainty in EMC Measurements" and is documented in the LCS quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. the manufacturer has the sole responsibility of continued compliance of the device.

Measurement	Uncertainty (U _{lab})	Uncertainty (U _{cispr})	
Conducted disturbance (9kHz - 150kHz)	± 1.40 dB	± 4.0 dB	
Conducted disturbance (150kHz - 30MHz)	± 2.80 dB	± 3.6 dB	
Magnetic field disturbance (9kHz - 150kHz)	1 2 4C 4D		
Magnetic field disturbance (150kHz - 30MHz)	± 3.46 dB	-	
Radiated disturbance (9kHz - 30MHz)	± 3.12 dB	N/A	
Radiated disturbance (30MHz - 200MHz)	± 4.66 dB	± 5.2 dB	
Radiated disturbance (200MHz - 1GHz)	± 4.64 dB	± 5.0 dB	
Harmonic current	± 0.64%	-	
Voltage fluctuations & Flicker	± 0.53%	-	

Supplementary information:

The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor of k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

0

3. MEASURING DEVICES AND TEST EQUIPMENT

CON	CONDUCTED DISTURBANCE								
Item	Test equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date			
1	EMI Test Receiver	R&S	ESCI	101142	2021-06-08	2022-06-08			
2	10dB Attenuator	SCHWARZBECK	VTSD9561-F	9561-F159	2021-06-08	2022-06-08			
3	Artificial Mains Network	SCHWARZBECK	NSLK8127	8127716	2021-06-08	2022-06-08			
4	EMI Test Software	EZ	EZ_EMC	N/A	1	1			
5	Asymmetric Artificial Network	SCHWARZBECK	NTFM 8158	NTFM8158#120	2021-06-08	2022-06-08			
6	Voltage Probe	SCHWARZBECK	KT 9420	9420401	2021-06-08	2022-06-08			
7	No. 2 shielded Room	CHENGYU	843	/	2020-06-16	2023-06-16			

RAD	RADIATED DISTURBANCE (9KHz - 30MHz)									
Item	Test equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date				
1	EMI Test Receiver	R&S	ESCI	101142	2021-06-08	2022-06-08				
2	Triple-loop Antenna	EVERFINE	LLA-2	9161	2021-06-08	2022-06-08				
3	EMI Test Software	EZ	EZ_EMC	N/A	1	/				
4	No. 2 shielded Room	CHENGYU	843	/	2020-06-16	2023-06-16				

RAD	RADIATED DISTURBANCE (30MHz - 1GHz)									
Item	Test equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date				
1:3	3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	2021-06-15	2024-06-15				
2	EMI Test Receiver	R&S	ESCI3	101010	2021-06-08	2022-06-08				
3	Spectrum Analyzer	Agilent	N9020A	MY49100699	2021-06-08	2022-06-08				
4	Log-periodic Antenna	SCHWARZBECK	VULB9163	5094	2019-06-23	2022-06-23				
5	Horn Antenna	ETS-LINDGREN	3115	00034771	2019-06-23	2022-06-23				
6	EMI Test Software	EZ	EZ_EMC	N/A	1	1				
7	Positioning Controller	MF	BK8807-4A-2T	2016-0808-008	1	/				

HAR	HARMONIC CURRENT & FLICKER								
Item	Test equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date			
1	Harmonic Current And Flicker Test System	HTEC	AC2000A	1	2021-06-08	2022-06-08			
2	Linear Variable Frequency Power Supply	HTEC	HHF-5010	1	2021-06-08	2022-06-08			

ELECTROSTATIC DISCHARGE						
Item	Test equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	ESD Simulator	TESEQ	NSG 437	1615	2022-03-21	2023-03-21

ELE	ELECTRICAL FAST TRANSIENT / BURST								
Item	Test equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date			
1	Electrical Fast Transient Generator	HTEC	HEFT51	162201	2021-06-10	2022-06-10			

Page 10 of 56 Report No.: LCS220105116BE

2	Coupling Clamp	HTEC	H3C	163701	2022-05-05	2023-05-05
一十讯	The July Cab	古话位为alab	_ 11	刊海 July Lab		古话检测的

SUR	SURGE							
Item	Test equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date		
1	Surge Generator	3CTEST	SG5006G	EC5581070	2022-05-05	2023-05-05		
2	Coupling / decoupling Network	3CTEST	SGN-5010G	EC5591033	2022-05-05	2023-05-05		

INJE	INJECTED CURRENTS (RADIO-FREQUENCY COMMON MODE)									
Item	Test equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date				
1	Conducted Susceptibility Generator	HTEC	CDG6000	126A140012016	2021-06-08	2022-06-08				
2	Coupling Network	HTEC	CDN-M2+M3	A22/0382/2016	2021-06-08	2022-06-08				
3	Attenuator 6dB	HTEC	ATT6	HA1601	2021-06-08	2022-06-08				
4	Electromagnetic clamp	LUTHI	EM101	35535	2021-06-08	2022-06-08				

POV	POWER FREQUENCY MAGNETIC FIELD								
Item	Test equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date			
1	Power Frequency Mag-Field Generator System	HTEC	HPFMF100	100-2400	2021-06-08	2022-06-08			

VOL	VOLTAGEDIPS AND SHORT INTERRUPTIONS								
Item	Test equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date			
1	Voltage Dips and up Generator	HTEC	HPFS161P	162202	2021-06-10	2022-06-10			

RAD	RADIO-FREQUENCY ELECTROMAGNETIC FIELDS									
Item	Test equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date				
1	RS Test Software	Tonscend	1	1	N/A	N/A				
2	ESG Vector Signal Generator	Agilent	E4438C	MY42081396	2021-11-14	2022-11-14				
3	3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	2020-06-11	2023-06-11				
4	RF Power Amplifier	OPHIR	5225R	1052	2021-11-21	2022-11-21				
5	RF Power Amplifier	OPHIR	5273F	1019	2021-11-21	2022-11-21				
6	Stacked Broadband Log Periodic Antenna	SCHWARZBECK	STLP 9128	9128ES-145	2021-11-21	2022-11-21				
7	Stacked Mikrowellen LogPer Antenna	SCHWARZBECK	STLP 9149	9149-484	2021-11-21	2022-11-21				

4. VERDICT SUMMARY SECTION

This chapter present an overview of the standards and results. Refer the next chapter for details of measured test results and applied test levels.

4.1. STANDARD(S)

<u>EN IEC 55015:2019+A11:2020</u> - Limits and methods of measurement of radio disturbance characteristics of electrical lighting and similar equipment.

EN 61547:2009 - Equipment for general lighting purposes — EMC immunity requirements.

EN IEC 61000- 3-2:2019+A1:2021 - Electromagnetic compatibility (EMC) Part 3-2: Limits for harmonic current emissions (equipment input current ≤16 A per phase).

EN 61000-3-3:2013+A1:2019+A2:2021 - Electromagnetic compatibility (EMC)Part 3-3: Limits for voltage changes, voltage fluctuations and flicker in public low-voltage supply systems, for equipment with rated current ≤16 A per phase and not subject to conditional connection.

Report No.: LCS220105116BE

4.2. OVERVIEW OF RESULTS

$(1, cs^{16})$ MS $(1, cs^{16})$ MS $(1, cs^{16})$	3 Tes 1X	5/1 CS 163	
EMISSION TESTS - EN IEC 55015, EN IEC 6100	00-3-2, EN 61000-3-3		
Requirement - Test case	Limit	Verdict	
Conducted Disturbance - electric power supply	Table 1, Table 4	PASS	
Conducted Disturbance - wired network ports at other than power supply	Table 2, Table 3	N/A	
Conducted Disturbance - local wired ports at other than electrical power supply interface of ELV lamp	Table 5, Table 6	N/A	
Assessment of the enclosure port			
Radiated Disturbance in the frequency range 9 kHz to 30 MHz	Table 8, Table 9	PASS	
Radiated Disturbance in the frequency range 30 MHz to 1 GHz	Table 10	PASS	
Harmonic Current	Clause 7	N/A	
Voltage Fluctuations and Flicker ²	Clause 5	N/A	
IMMUNITY TESTS - EN 6154	17		
Requirement - Test case	Basic Standard(s)	Verdict	
Electrostatic Discharge	IEC/EN 61000-4-2	PASS	
Radio-Frequency Electromagnetic Fields	IEC/EN 61000-4-3	PASS	
Electrical Fast Transient / Burst	IEC/EN 61000-4-4	PASS	
Surge The Lab	IEC/EN 61000-4-5	PASS	
Injected Currents (Radio-Frequency Common Mode)	IEC/EN 61000-4-6	PASS	
Power Frequency Magnetic Field ¹	IEC/EN 61000-4-8	N/A	
Voltage Dips and Short Interruptions	IEC/EN 61000-4-11	PASS	

Supplementary information:

- 1) Only need to be applied to equipment containing components susceptible to magnetic fields.
- 2) According to EN 61000-3-3:2013+A1:2019+A2:2021 Clause A.2, Incandescent lamp luminaires with ratings less than or equal to 1000W and discharge and LED lamp luminaires with ratings less than or equal to 600W, are deemed to comply with the standard and are not required to be tested.

5. EMISSION TESTS

5.1. CONDUCTED DISTURBANCE

Standard	EN IEC 55015:2019+A11:2020
Basic Standard(s)	EN 55016-2-1

Disturbance voltage limits at the electric power supply interface

Frequency range [MHz]	Limit: Quasi-peak [dB(µV)]	Limit: Average[dB(µV)]	IF BW
0,009 - 0,05	110	N/A	200 Hz
0,05 - 0,15	90 - 80	N/A	200 Hz
0,15 - 0,5	66 - 56	56 - 46	9 kHz
0,5 - 5,0	56	46	9 kHz
5,0 - 30	60	50	9 kHz

- 1) At the transition frequency, the lower limit applies.
- 2) The limit decreases linearly with the logarithm of the frequency in the ranges 50 kHz to 150 kHz and 150 kHz to 0,5 MHz.
- 3) If the EUT is non-restricted ELV lamps, the limits add 26dB.

Disturbance voltage limits at wired network interfaces other than power supply

Frequency range [MHz]	Limit: Quasi-peak [dB(µV)]	Limit: Average[dB(µV)]	IF BW
0,15 - 5,0	84 - 74	74 - 64	9 kHz
5,0 - 30	74 9 Lab	64 ng Lab	9 kHz

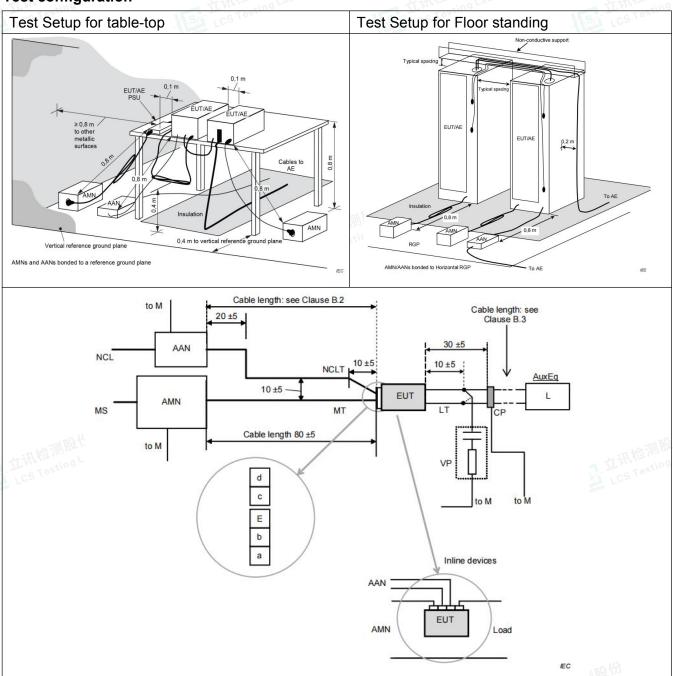
- 1) The limits decrease linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.
- 2) The disturbance voltage limits are derived for use with an artificial asymmetrical network (AAN) which presents a common mode (asymmetric mode) impedance of 150 Ω to the measured interface.

Disturbance current limits at wired network interfaces other than power supply

Frequency range [MHz]	Limit: Quasi-peak [dB(µA)]	Limit: Average[dB(µA)]	IF BW
0,15 - 5,0	40 - 30	30 - 20	9 kHz
5,0 - 30	30	20	9 kHz

¹⁾ The limits decrease linearly with the logarithm of the frequency in the range 0.15MHz to 0.5 MHz.

Disturbance voltage limits at local wired ports: local wired ports other than electrical power supply interface of ELV lamp


Frequency range [MHz]	Limit: Quasi-peak [dB(µV)]	Limit: Average[dB(µV)]	IF BW	
0,15 - 5,0	80	70	9 kHz	
5,0 - 30	74	64	9 kHz	
At the transition frequency, the lower limit applies.				

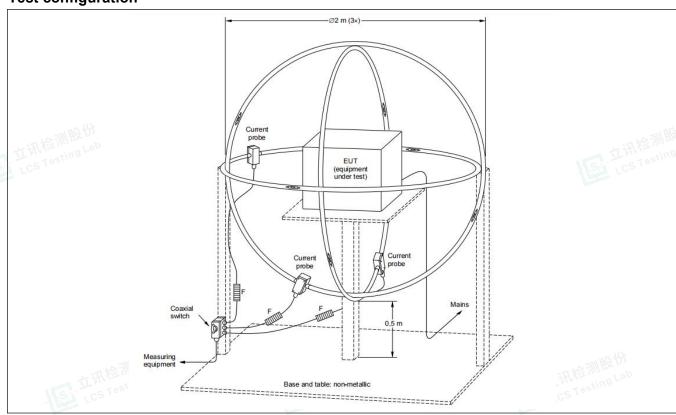
Test configuration

Test Procedure Description

For Table-top, EUT shall be placed at (0.8 ± 0.05) m above the reference plane of the test site selected for measurement. for Floor standing, EUT shall be placed at (0,12 ± 0,04) m above the reference plane of the test site selected for measurement.

and connected to the AC mains through artificial mains network (LISN). EUT is powered by V-type artificial power network, and the distance from LISN or ANN is 0,8m. the part of the EUT power cord exceeding 0,8m folds in parallel to form a 0,3-0,4 m eights harness.

5.2. RADIATED DISTURBANCE (9KHz - 30MHz)


Standard	EN IEC 55015:2019+A11:2020	VSI LCS Tes
Basic Standard(s)	EN 55016-2-3	
Test method	Large Loop Antenna (LLA)	

LLAS Radiated disturbance limits (2m)

Frequency range [MHz]	Limit: Quasi-peak [dB(μA)]	IF BW
0,009 - 0,07	88	200 Hz
0,07 - 0,15	88 - 58	200 Hz
0,15 - 3,0	58 - 22	9 kHz
3,0 - 30	22 Jing Lab	9 kHz

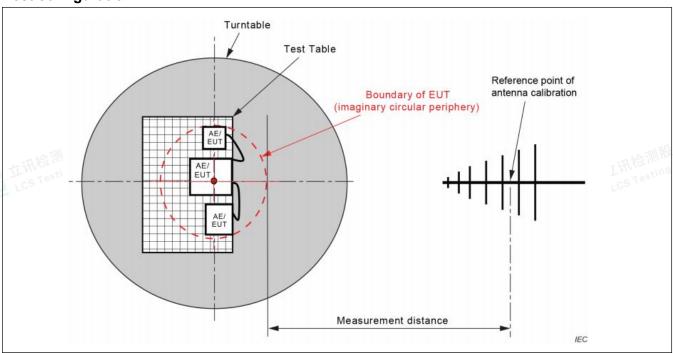
- 1) At the transition frequency the lower limit applies.
- 2) Decreasing linearly with logarithm of the frequency.

Test configuration

Test Procedure Description

The EUT is placed on a wood table in the center of a loop antenna. the induced current in the loop antenna is measured by means of a current probe and the test receiver. Three field components are checked by means of a coaxial switch.

5.3. RADIATED DISTURBANCE (30MHz - 1GHz)


Standard	EN IEC 55015:2019+A11:2020	VST LCS Testins
Basic Standard(s)	EN 55016-2-3	
Test method	Semi Anechoic Chamber (SAC)	

SAC Radiated disturbance limit

Eroguenov renge [MHz]	Limit: Quasi-pe	eak [dB(μV/m)]	IF BW
Frequency range [MHz]	3 m distance	10 m distance	IF DVV
30 - 230	40	30	120 KHz
230 - 1000	47	37	120 KHz

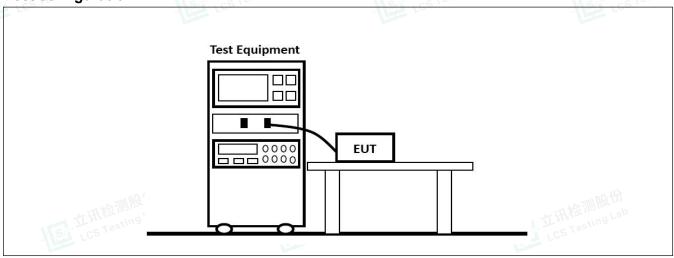
- 1) At the transition frequency, the lower limit applies.
- 2) Distance refers to the distance in meters between the measuring instrument antenna geometric center and the closed point of any part of the EUT.

Test configuration

Test Procedure Description

The radiated disturbance test was conducted in a 3m Semi Anechoic Chamber and conforming to CISPR 16-2-3. the EUT is placed on a turntable, which is 0.8 meter high above the ground. the turntable can rotate 360 degrees to determine the position of the maximum emission level. the EUT is set 3 meters away from the receiving antenna, which is mounted on an antenna tower. the antenna can be moved up and down from 1 to 4 meters to find out the maximum emission level. Log-periodic Antenna (calibrated by Dipole antenna) is used as a receiving antenna. both horizontal and vertical polarization of the antenna is set on test.

Test Results refer to Annex A.3



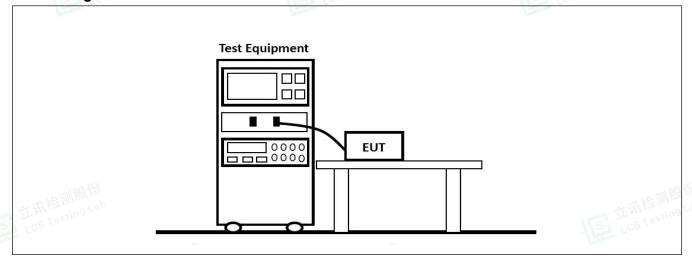
5.4. HARMONIC CURRENT

TIVE ting		The sing The sing	
Standard	EN IEC 61000-3-2:2019+A1:2021		
		Systems with nominal voltages less than 220Vac (line-to-neutral)	
Exlusions	\boxtimes	Lighting equipment with rated power < 5 W	
(For these categories of equipment, limits are not specified in the EN		Equipment with rated power of ≤ 75 W (other than lighting equipment)	
		Professional equipment with a total rated power >1kW	
IEC 61000-3-2)		Symmetrically controlled heating elements with rated power ≤ 200 W	
		Independent dimmers for incandescent lamps with rated power ≤ 1kW	

Classification					
	Class A	All ed	All equipment not specified as belonging to Class B, C or D		
	Class B	Porta	Portable tools		
			Light	ing equipment with active input power > 25W	
			Light	ing equipment with active input power ≥ 5W and ≤ 25W	
	Class C			Table 3, column 2 (Power-related limits)	
					3rd harmonic ≤ 86%, 5th harmonic ≤ 61% and waveform conditions
					THD \leq 70%, Harmonic:3rd \leq 35%, 5th \leq 25%, 7th \leq 30%, 9th and 11th \leq 20%, 2nd \leq 5%
	Class D	Personal computers, television receivers,refrigerators and freezers having one or more variable-speed drives to control compressor			

Test configuration

*



5.5. VOLTAGE FL	UCTUATI	ONS & FLICKER		
Standard	181	EN 61000-3-3:2013+A	1:2019+A2:2021	LCS TOST

Limit

Pst (Short term flicker)	≤ 1	\boxtimes	Not applicable
Plt (Long-term flicker)	≤ 0,65	\boxtimes	Not applicable
T _{max} (Accumulated time)	≤ 500 ms	\boxtimes	Not applicable
dc (Relative voltage change)	≤ 3.3%	\boxtimes	Not applicable
d (May voltage change)	≤ 4%		≤ 6%
d _{max} (Max.voltage change)	≤ 7%	\boxtimes	Not applicable

Test configuration

Report No.: LCS220105116BE

6. IMMUNITY TESTS

6.1. PERFORMANCE CRITERIA

Standard	EN 61547:2009
I .	

The performance of lighting equipment shall be assessed by monitoring:

- the luminous intensity of the luminaire or of the lamp(s).
- the functioning of the control in the case of equipment which includes a regulating control or concerns the regulating control itself.
- the functioning of the starting device, if any.

<u>Performance criterion A:</u> during the test, no change of the luminous intensity shall be observed and the regulating control, if any, shall operate during the test as intended.

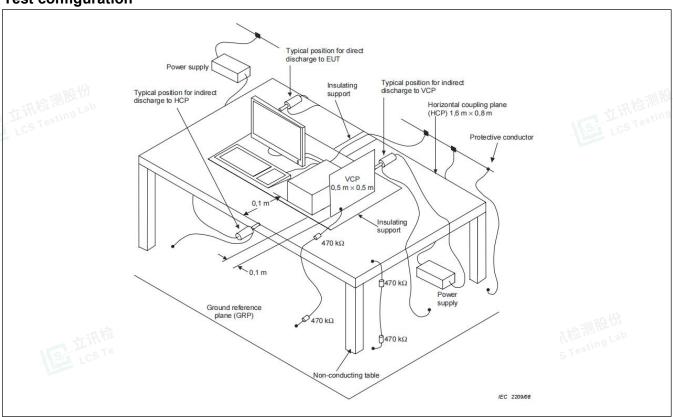
<u>Performance criterion B:</u> during the test, the luminous intensity may change to any value. after the test, the luminous intensity shall be restored to its initial value within 1 min. regulating controls need not function during the test, but after the test, the mode of the control shall be the same as before the test provided that during the test no mode changing commands were given.

<u>Performance criterion C:</u> during and after the test, any change of the luminous intensity is allowed and the lamp(s) may be extinguished. after the test, within 30 min, all functions shall return to normal, if necessary by temporary interruption of the mains supply and / or operating the regulating control.

	-mil REMY	设份		Test	s and p	erform	ance cri	teria	1/3
立识	Electronic lighting equipment	5.2 (ESD)	5.3 (RS)	5.4 (PFMF)	5.5 (EFT)	5.6 (CS)	5.7 (Surge)	5.8 (Dips)	5.9 (Interruption)
	Self-ballasted lamps	В	Α	В	В	Α	С	С	В
	Independent auxiliaries	В	Α	В	В	Α	С	С	B¹
	Luminaire including active electronic components	В	А	В	В	А	С	С	B¹
	Luminaire for emergency lighting	B ²	Α	В	B²	Α	B²	See³	See³

Supplementary information:

- 1) For ballasts where the lamp is not able to restart within 1 min, due to the physical constraints of the lamp, performance criterion C applies.
- 2) Luminaires for emergency lighting shall be tested in both the normal and emergency mode of operation.
- 3) These tests do not apply as they are covered by the test in IEC 60598-2-22.
- 4) For emergency luminaires designed to operate in high-risk task areas, after the test, the luminous intensity shall be restored to its initial value within 0.5 s.


6.2. ELECTROSTATIC DISCHARGE

Electrostatic discharge (ESD) is the result of accumulated static electricity from a person or object, for example, walking on a synthetic carpet. ESD can indirectly affect the operation of equipment or damage its electronic components through direct discharge or coupling. both effects were simulated during the test. contact discharge is the preferred test method. twenty discharges (10 with positive and 10 with negative polarity) shall be applied on each accessible metallic part of the enclosure (terminals are excluded). air discharges shall be used where contact discharges cannot be applied. discharges shall be applied on the horizontal or vertical coupling planes.

Requirements

Standard	EN	EN 61547:2009							
Basic standard	EN	EN 61000-4-2							
Port under test	Enc	Enclosure Enclosure			ting				
Contact discharge	\boxtimes	± 2 kV			± 4 kV		±8 kV		±15 kV
Air discharge	\boxtimes	± 2 kV		\boxtimes	± 4 kV	\boxtimes	±8 kV		±15 kV
Number of discharges	≥ 10 per polarity with ≥ 1 sec interval								

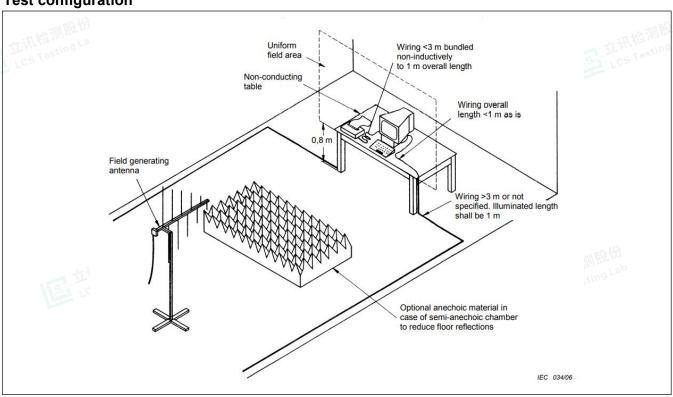
Test configuration

Test Results refer to Annex A.4

0

6.3. RADIO-FREQUENCY ELECTROMAGNETIC FIELDS

During the test it is verified if the EUT has sufficient immunity against radiated electromagnetic fields.


The test was carried out in a half-wave anechoic chamber with absorbent material attached to a reflective ground plate, Before the test, the test field strength needs to be calibrated, during the calibration, the corresponding relationship between the target field strength and the forward power applied to the transmitting antenna is established during the test, except for EUT, the indoor layout is consistent with the calibration.

The EUT and its simulators are placed on a turn table which is 0,8 meter above ground. EUT is set 3 meter away from the transmitting antenna which is mounted on an antenna tower. both horizontal and vertical polarization of the antenna are set on test. each of the four sides of EUT must be faced this transmitting antenna and measured individually. in order to judge the EUT performance, a CCD camera is used to monitor EUT screen.

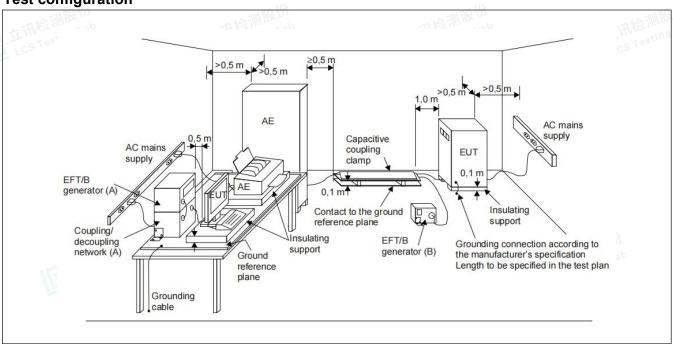
Requirements

rtoquiromonto			-112	
Standard	EN 61547:2009			
Basic standard	EN 61000-4-3	EN 61000-4-3		
Port under test	Enclosure			
Frequency range	Test level	Modulation	Dwell time	Step size
80 - 1000 MHz	3 V/m	1 kHz, 80 % AM	≥ 0,5 s	≤ 1%

Test configuration

6.4. ELECTRICAL FAST TRANSIENT / BURST

The EFT immunity test simulates the disturbances by caused of very short transient bursts.


The EUT is put on the Insulating support which is 0.1 meter high above the ground reference plane. the minimum distance between EUT and all other conductive structure, except the ground plane beneath the EUT, shall be more than 0.5 m. both polarities of the test voltage should be applied during test, fast transients are carried out with a minimum duration of 2 min with a positive polarity and a minimum of 2 min with a negative polarity.

Requirements

Standard	EN 61547:20	009		
Basic standard	EN 61000-4-	-4 ~ mi RE2 (1)		~ 测报分
Pulse characteristics	5/50 ns	立语程psing Lab		Fill Tasting Lab
Port under test		Test level	Repetition frequency	Duration
AC input / output r	OWER	+ 1000 V	5 kHz	2 min / nolarity

- AC input / output power ± 1000 V 5 kHz 2 min / polarity DC input / output power ² ± 500 V 5 kHz 2 min / polarity Signal / Control port 13 ± 500 V 5 kHz 2 min / polarity
- 1) Only applicable to ports interfacing with cables whose whose total length may exceed 3 m.
- 2) Not applicable to equipment not connected to the mains while in use.
- 3) Change of state commands are not applied during the test.

Test configuration

6.5. INJECTED CURRENTS (RADIO-FREQUENCY COMMON MODE)

During the test the immunity of the EUT for conducted electromagnetic fields is checked.

The equipment to be tested is placed on an insulating support of 0,1 m ± 0,05 m height above a reference ground plane. a non conductive roller / caster in the range of 0,1 m ± 0,05 m above the reference ground plane can be used as an alternative to an insulating support. all cables exiting the EUT shall be supported at a height of at least 30 mm above the reference ground plane. The coupling and decoupling devices shall be placed on the reference ground plane, making direct contact with it at a distance of 0,1 m to 0,3 m from the EUT.

Requirements

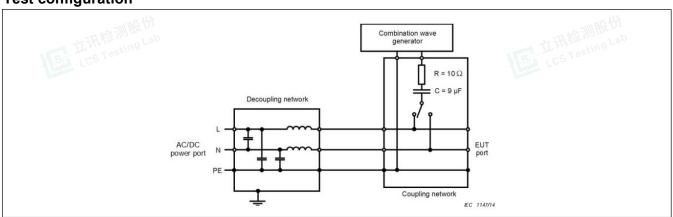
Standard	EN 61547:2009	
Basic standard	EN 61000-4-6	古讯检测 Re Lab
Frequency range	0,15 - 80 MHz	LCS Testing

Port	under test	Test level	Modulation	Dwell time	Step size
	AC input / output power	3 V	1 kHz, 80 % AM	≥ 0,5 s	≤ 1%
	DC input / output power 1	3 V	1 kHz, 80 % AM	≥ 0,5 s	≤ 1%
	Signal / Control port ²	3 V	1 kHz, 80 % AM	≥ 0,5 s	≤ 1%

- 1) Not applicable to equipment not connected to the mains while in use.
- 2) Only applicable to ports interfacing with cables whose whose total length may exceed 3 m.

Test configuration

6.6. SURGE


The surge immunity test is simulates unidirectional surges caused by overvoltages from switching and lightning transients.

The surge is applied to the EUT power supply terminal via the capacitive coupling network, to the EUT power supply provide a 1,0 KV 1,2/50us voltage surge (at open-circuit condition), at least 5 positive and 5 negative tests with 1 min or less repetition rate are conducted during test. and phase angles is 90°and 270°.

Requirements

Stan	dard	EN 61547:2009				
Basi	c standard	EN 61000-4-5				
Puls	e wave-shape	1,2/50 µs	五岭测度份		心测股份	
Rep	etition rate	1 per minute or faster	Tylling Land	VS. II	S Testing Lan	
Num	ber of pulses	5 pulses (at each pola	arity and phase ang	les)		
Clas	sification	Port under test	Test Level	Coupling	Phase angle	
	Luminaires and	AC input payor	+ 1 kV	line - line	90°	
	independent	AC input power	- 1 kV	line - line	270°	
	auxiliaries Input power >25W	AC input namer	+ 2 kV	line - ground	90°	
		AC input power	- 2 kV	line - ground	270°	
	Luminaires and		+ 0,5 kV	line - line	90°	
	independent	AC input power	- 0,5 kV	line - line	270°	
	auxiliaries	Till Maring Lab	+ 1 kV	line - ground	90°	
LCS	Input power ≤25W	t power ≤25W AC input power	- 1 kV	line - ground	270°	
			+ 0,5 kV	line - line	90°	
	Self-ballasted	AC input power	- 0,5 kV	line - line	270°	
	lamps and semi-luminaires		+ 1 kV	line - ground	90°	
		AC input power	- 1 kV	line - ground	270°	

Test configuration

Test Results refer to Annex A.4

30

6.7. VOLTAGE DIPS AND SHORT INTERRUPTIONS

The surge immunity test is simulates Voltage dips and short interruptions occur due to faults in a (public or non-public) network or in installations by sudden changes of large loads.


The EUT shall be connected to the test generator for testing using the shortest power cable specified by the EUT manufacturer and, if no cable length is specified, the shortest cable suitable for the EUT, each representative mode of operation shall be tested. for short interruptions to use 0° for one of the phases.

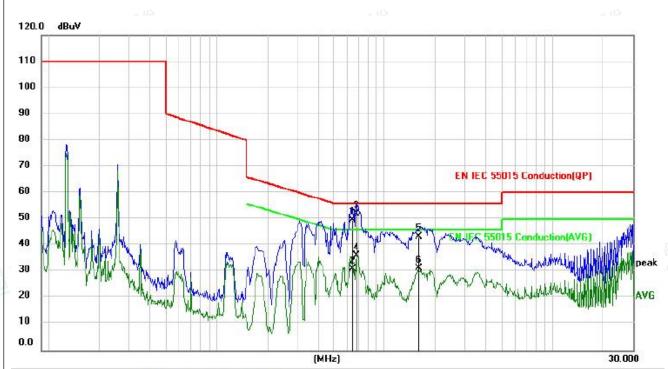
Requirements

Standard	EN 61547:2009			
Basic standard	EN 61000-4-11			
# of dips / interruptions	3 dips / interruptions for each test level and phase angle			
Intervals between events	≥ 10 s	1/2	LCS Test	
Port under test	Test level ¹	Number of periods (cycles)		
Port under test	l est level	50Hz	60Hz	
AC input power	70% of Unom	10	12	
AC input power	0% of U _{NOM}	0,5	0,5	

- 1) Where the equipment has a rated voltage range the following shall apply:
- If the voltage range does not exceed 20 % of the lower voltage specified for the rated voltage range, a single voltage within that range may be specified as a basis for the test level specification.
- in all other cases, the test procedure shall be applied for both the lowest and highest voltages declared in the voltage range.

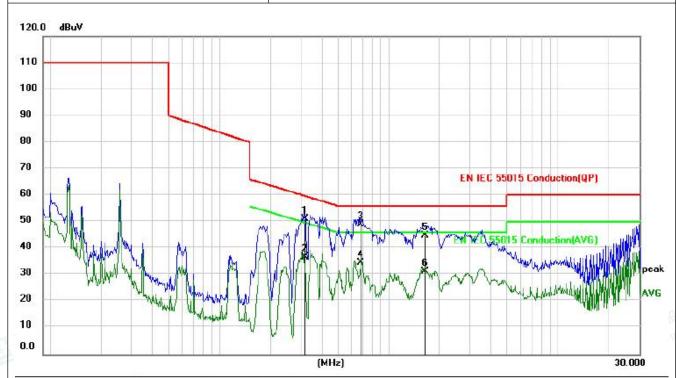
Test configuration

Test Results refer to Annex A.4



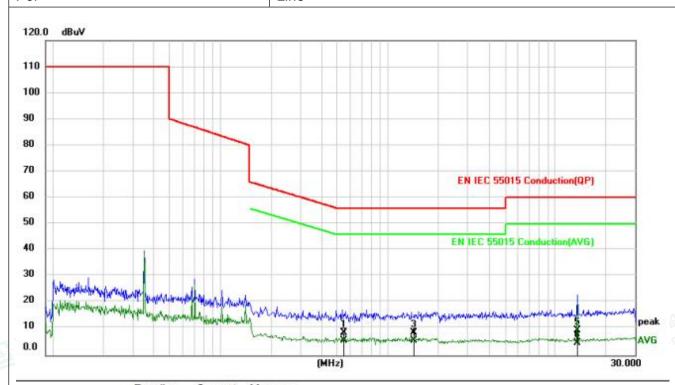
ANNEX A - TEST RESULTS

A.1. CONDUCTED DISTURBANCE TEST RESULTS


Environmental Conditions	23.9℃, 53% RH
Model	DS-EL-01M
Operating mode	Mode 2 (worst case)
Test voltage	AC 230V,50Hz
Test engineer	Sam Chen
Pol	Line

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1	0.6478	39.52	10.20	49.72	56.00	-6.28	QP		
2	0.6478	20.95	10.20	31.15	46.00	-14.85	AVG		
3 *	0.6774	41.90	10.20	52.10	56.00	-3.90	QP		
4	0.6774	26.06	10.20	36.26	46.00	-9.74	AVG		
5	1.5838	33.12	10.20	43.32	56.00	-12.68	QP		
6	1.5838	21.08	10.20	31.28	46.00	-14.72	AVG		

Environmental Conditions	23.9℃, 53% RH	女语检测 Ting
Model	DS-EL-01M	LCS LCS
Operating mode	Mode 2 (worst case)	
Test voltage	AC 230V,50Hz	
Test engineer	Sam Chen	
Pol	Neutral	

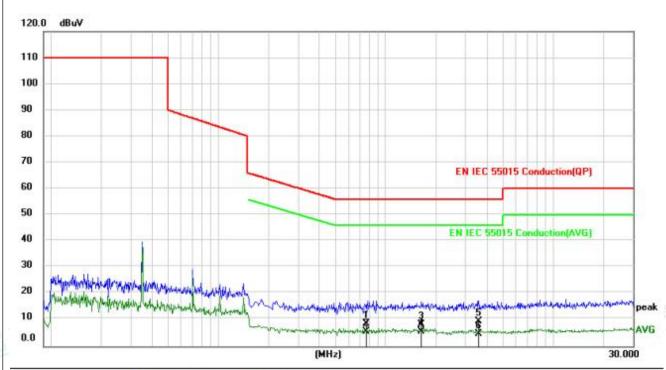


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.3147	40.89	10.20	51.09	59.85	-8.76	QP	
2		0.3147	26.44	10.20	36.64	49.85	-13.21	AVG	
3	*	0.6761	38.87	10.20	49.07	56.00	-6.93	QP	
4		0.6761	24.34	10.20	34.54	46.00	-11.46	AVG	
5		1.6231	34.72	10.20	44.92	56.00	-11.08	QP	
6		1.6231	21.16	10.20	31.36		-14.64	AVG	
	16	LCS Tes	flua		VE.	LCST	estilia		LCS Testing

Environmental Conditions 23.9℃, 53% RH Model DS-EL-01M Operating mode Mode 3 (worst case) DC Test voltage Sam Chen Test engineer Pol Line

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.5475	-1.77	10.20	8.43	56.00	-47.57	QP	
2	*	0.5475	-4.55	10.20	5.65	46.00	-40.35	AVG	
3		1.4438	-1.77	10.20	8.43	56.00	-47.57	QP	
4		1.4438	-4.67	10.20	5.53	46.00	-40.47	AVG	
5		13.5673	-0.86	10.20	9.34	60.00	-50.66	QP	
6		13.5673	-5.45	10.20	4.75	50.00	-45.25	AVG	
	1/2	LCSTes	fir		1/5	LCST	(est		LCS Testino

 Environmental Conditions
 23.9℃, 53% RH

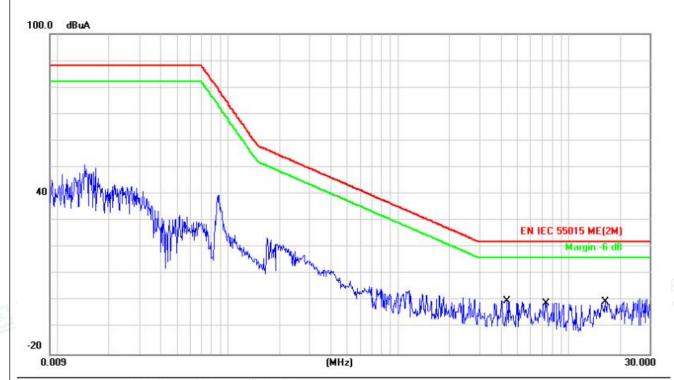

 Model
 DS-EL-01M

 Operating mode
 Mode 3 (worst case)

 Test voltage
 DC

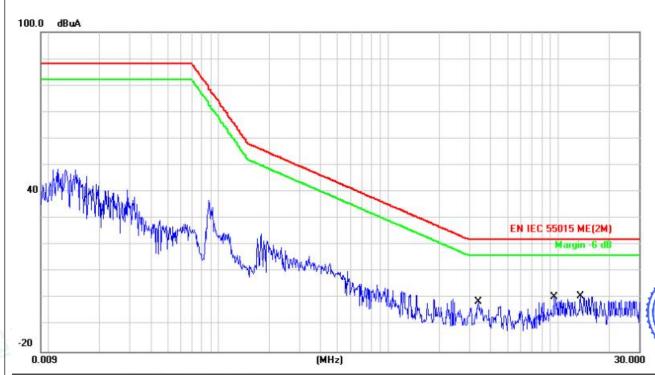
 Test engineer
 Sam Chen

 Pol
 Neutral

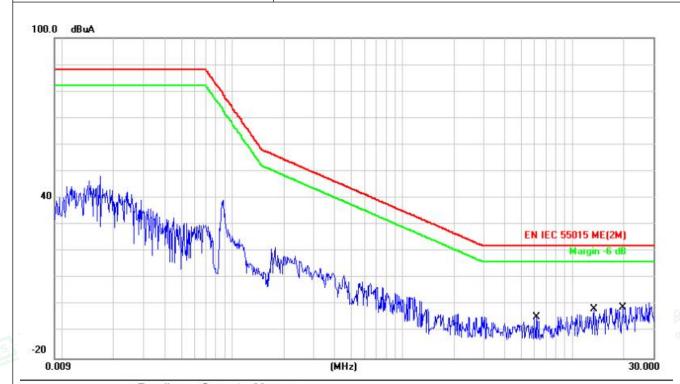

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.7685	-1.68	10.20	8.52	56.00	-47.48	QP	
2	*	0.7685	-4.59	10.20	5.61	46.00	-40.39	AVG	
3		1.6216	-1.86	10.20	8.34	56.00	-47.66	QP	
4		1.6216	-4.69	10.20	5.51	46.00	-40.49	AVG	
5		3.5711	-0.86	10.20	9.34	56.00	-46.66	QP	
6		3.5711	-5.48	10.20	4.72	46.00		AVG	
	15/	LCS Tes	flus		1/2	LCST	Setling		LCS Testing

*

Environmental Conditions	23.9℃, 53% RH	LCS Tastin
Model	DS-EL-01M	
Operating mode	Mode 2 (worst case)	
Test voltage	AC 230V,50Hz	
Test engineer	Sam Chen	
Pol	X	

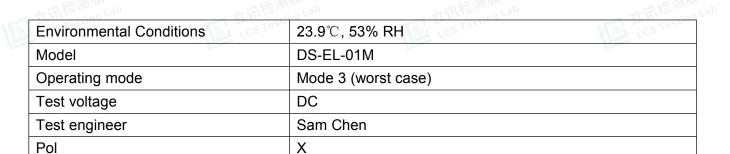


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuA	dB	dBuA	dBuA	dB	Detector	Comment	
1	*	4.3517	15.20	-15.14	0.06	22.00	-21.94	QP		
2	į	7.3733	15.38	-16.20	-0.82	22.00	-22.82	QP		
3		16.4599	27.17	-27.51	-0.34	22.00	-22.34	QP		


Environmental Conditions	23.9℃, 53% RH	工语位测量 工语位别
Model	DS-EL-01M	VSI LCS TO
Operating mode	Mode 2 (worst case)	
Test voltage	AC 230V,50Hz	
Test engineer	Sam Chen	
Pol	Υ	

No. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		111	
	MHz	dBuA	dB	dBuA	dBuA	dB	Detector	Comment	
1	3.3843	14.27	-15.44	-1.17	22.00	-23.17	QP		
2	9.4814	20.44	-20.00	0.44	22.00	-21.56	QP		
3 *	13.5480	25.39	-24.67	0.72	22.00	-21.28	QP		

23.9℃, 53% RH	TiR检测 ting
DS-EL-01M	LCS 105
Mode 2 (worst case)	
AC 230V,50Hz	
Sam Chen	
Z	
	DS-EL-01M Mode 2 (worst case) AC 230V,50Hz



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuA	dB	dBuA	dBuA	dB	Detector	Comment	
1		6.1184	10.75	-15.38	-4.63	22.00	-26.63	QP		
2		13.3300	22.68	-24.26	-1.58	22.00	-23.58	QP		
3	*	19.8353	28.22	-29.03	-0.81	22.00	-22.81	QP		

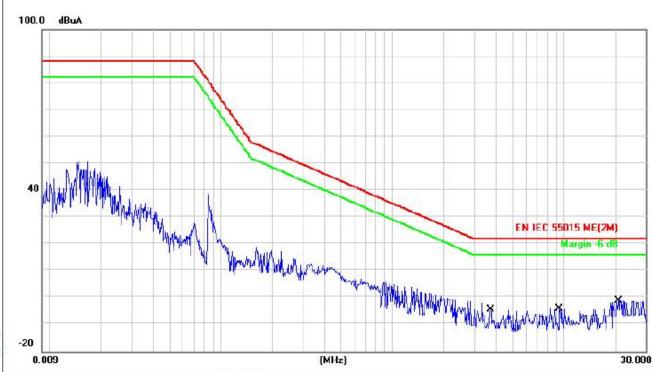
EN IEC 55015 ME(2M) Margin - 6 d8			JUN WAREL	MUNICHAYAYA MAKAZILINI
40		May Any	hirworky and a second	
	40 ////////////////////////////////////			

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over			
		MHz	dBuA	dB	dBuA	dBuA	dB	Detector	Comment	
1	*	4.8752	15.58	-15.19	0.39	22.00	-21.61	QP		
2		7.9964	15.92	-16.59	-0.67	22.00	-22.67	QP		
3		11.8991	20.14	-21.77	-1.63	22.00	-23.63	QP		

Environmental Conditions 23.9℃, 53% RH DS-EL-01M Model Operating mode Mode 3 (worst case) DC Test voltage Sam Chen Test engineer Υ Pol

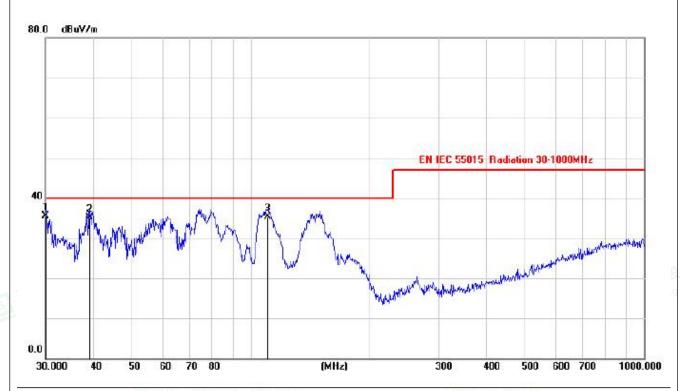
, Jan Million		
40		
" I WINT I NO.		EN IEC 55015 ME(2M)
W/W/In	M. pradicional Million production of constraint line of the constrai	Margin -6 d8
	The state of the s	
20		2 S. Strate of A. M. Mark Mark School of the Co.
0.009	(MHz)	30

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuA	dB	dBuA	dBuA	dB	Detector	Comment	
1	*	3.5531	17.64	-15.35	2.29	22.00	-19.71	QP		
2		7.0231	17.35	-15.97	1.38	22.00	-20.62	QP		
3		21.1659	32.34	-31.61	0.73	22.00	-21.27	QP		



Environmental Conditions 23.9℃, 53% RH Model DS-EL-01M Operating mode Mode 3 (worst case) Test voltage DC Sam Chen Test engineer Ζ Pol

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
	MHz	dBuA	dB	dBuA	dBuA	dB	Detector	Comment	
1	3.7303	10.89	-15.25	-4.36	22.00	-26.36	QP		
2	9.4047	15.80	-19.83	-4.03	22.00	-26.03	QP		
3 *	20.8246	29.93	-30.87	-0.94	22.00	-22.94	QP		



A.3. RADIATED DISTURBANCE TEST RESULTS (30MHz - 1GHz)

Environmental Conditions	23.9℃, 51% RH	134 rcs				
Model	DS-EL-01M					
Operating mode	Mode 2 (worst case)					
Test voltage	AC 230V,50Hz					
Test engineer	Sam Chen					
Pol	Vertical					

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	30.1315	24.83	10.61	35.44	40.00	-4.56	QP			
2		38.9731	23.97	11.23	35.20	40.00	-4.80	QP			
3		110.2780	24.51	10.82	35.33	40.00	-4.67	QP			
	TE	立iH作 LCS Tes	ting Lab		1/2	立洲但LCSTE	sting Lar)		1/5/1	立計作 LCS Testing Lab

3)

Environmental Conditions	23.9℃, 51% RH	立语检测 ting
Model	DS-EL-01M	LCS LCS
Operating mode	Mode 2 (worst case)	
Test voltage	AC 230V,50Hz	
Test engineer	Sam Chen	
Pol	Horizontal	

				ſ	EN IEC 55	015 Radiation	30-1000MHz	
12	· ·		A pur	V~\^				
M. 1	ravilla of	MINN 1			Λ_{\perp}		and property and made	a despression of
Mayor	, M.			VALIMAN	L. Carlina	while the manufacture of the contraction of the con	Jelle .	

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin	i e	Antenna Height	Table Degree	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		85.6727	24.19	10.28	34.47	40.00	-5.53	QP			
2		103.4419	24.30	11.15	35.45	40.00	-4.55	QP			
3	*	175.8054	25.31	10.59	35.90	40.00	-4.10	QP			

Environmental Conditions	23.9℃, 51% RH	11 15 河景
Testill's Testill's	SILL TESTING	Tynna ding
Model	DS-EL-01M	Tres
Operating mode	Mode 3 (worst case)	
Test voltage	DC	
Test engineer	Sam Chen	
Pol	Vertical	

					Г	EN IEC 55	015 Radia	tion 30-	1000MHz	
	1				and a superperior			العالم ما الله	Na Hala Baran	posit hillware, draw
and the ball	expression productions	muning 3	Marine Market	Your hardware	and the paper and	demonstrate at the party	Charles Andrews			

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	56.1482	9.20	12.67	21.87	40.00	-18.13	QP			
2		74.4934	4.92	10.40	15.32	40.00	-24.68	QP			
3		159.9947	5.52	11.13	16.65	40.00	-23.35	QP			

工语版 parting Lab LCS Testing Lab

Pol

 Environmental Conditions
 23.9℃, 51% RH

 Model
 DS-EL-01M

 Operating mode
 Mode 3 (worst case)

 Test voltage
 DC

 Test engineer
 Sam Chen

Horizontal

						E	N IEC 5501	5 Radiati	on 30-1	000MHz	
										la su	aparament.
						with your property when when the		70,000	Makerak	An Albania	200-200
VI S. D. S. S. S.	Mr. wal	Marian Maria			2 day 2 day	البعاري	mark Barright	ANTHONOR STREET			
hall have better horse		No. of Street, or other Persons and Other Person	and which when	of April Androne	Africa and the sales	Applications of the second					

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		55.8047	2.71	13.17	15.88	40.00	-24.12	QP			
2	*	159.9947	6.43	9.88	16.31	40.00	-23.69	QP			
3		317.7011	2.70	14.13	16.83	47.00	-30.17	QP			

Shenzhen Southern LCS Compliance Testing Laboratory Ltd.

Scan code to check authenticity.

A.4. IMMUNITY TEST RESULTS

-6.10		10-	1102 -010		***
ı	ELECTROSTA	TIC DISCHARGE I	MMUNITY TEST RE	SULTS	
Standard	⊠ EN 61547:	2009	⊠ EN 61000-4-2		
EUT	LED exit emerg	gency light	Temperature	23.2℃	
M/N	DS-EL-01M		Humidity	50%	
Test Mode	Mode 2, Mode	: 3	Pressure	1008mbar	
Input voltage	AC 230V/50Hz	, DC	Test Results	Pass	
Test engineer	Sam Chen	. 用检测		i a m	文测股份
Discharge Mode	Test Points	Test Valtage (kV) & polarity	Number of discharges/polarity	Discharge interval (s)	Performance Criteria
Contact Discharge	-	± 2&4	10	1	В
Air Discharge	-	± 2&4&8	10	1	В
VCP	-	± 4	10	1	В
НСР	-	± 4	10	1	В

Note: "P" = Pass.

上 立语检测股份

RADIO-FRI	EQUENCY ELECTRO	MAGNETIC FIEL	D IMMUNITY TES	T RESULTS
Standard	⊠ EN 61547:2009		⊠ EN 61000-4-3	
EUT	LED exit emergency lig	ght	Temperature	24.1℃
M/N	DS-EL-01M		Humidity	55%
Test Mode	Mode 2		Pressure	1008mbar
Input voltage	AC 230V,50Hz		Test engineer	Baron wen
Modulation	1 kHz, 80 % AM	- T. HA	Test Results	Pass
Steps	1%	工讯检测版 Lab		工语标测图2 lab
Angle of EUT	Antenna polarization	Frequency Range	Test Level	Performance Criteria
0°	Vertical Horizontal	80 - 1000 MHz	3 V/m	А
90°	Vertical Horizontal	80 - 1000 MHz	3 V/m	А
180°	Vertical Horizontal	80 - 1000 MHz	3 V/m	А
270°	Vertical Horizontal	80 - 1000 MHz	3 V/m	A

Note:

*

四岭测股份	五台测段份	0	对检测股份	四岭测版
ELECTRICA	L FAST TRANS	IENT/BURST I	MMUNITY TEST	RESULTS
Standard	⊠ EN 61547:200	9	⊠ EN 61000-4-4	
EUT	LED exit emergen	cy light	Temperature	23.9℃
M/N	DS-EL-01M		Humidity	52%
Test Mode	Mode 2, Mode 3		Pressure	1008mbar
Input voltage	AC 230V/50Hz, DO	C	Test Results	Pass
Test engineer	Sam Chen	-214		-2 113
Port under test	Test Level & polarity	Repetition Frequency	Test duration / polarity	Performance Criteria
AC Input / Output Power	± 1 kV	5 kHz	2min	В
DC Input / Output Power				
Signal / Control Port				

Note:

LCS Testing La

立讯检测股份 Testing Lab

Shenzhen Southern LCS Compliance Testing Laboratory Ltd.

INJECTED CURRENTS (RADIO-FREQUENCY COMMON MODE) TEST RESULTS Standard ⋈ EN 61547:2009 ⋈ EN 61000-4-6 **24.1**℃ **EUT** Temperature LED exit emergency light M/N DS-EL-01M Humidity 54% Test Mode Mode 2 Pressure 1008mbar Input voltage AC 230V,50Hz **Test Results Pass** Frequency range 0,15 - 80 MHz Test engineer Sam Chen Port under test Test Level Coupling method Dwell time Performance Criteria 3 V CDN 3 seconds AC Input / Output Power Α DC Input / Output Power Signal / Control Port

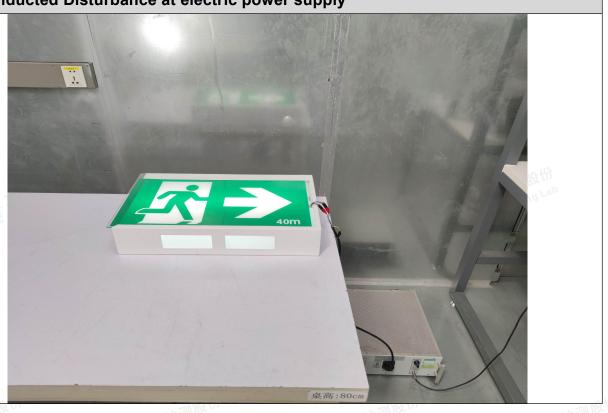
				金测股份 金测股份			
		SURGE IMM	JNITY TEST	RESULTS			
Standard	⊠ EN 615	47:2009		⊠ EN 61000-	4-5		
EUT	LED exit en	D exit emergency light			23.9℃		
M/N	DS-EL-01M	1		Humidity	52%		
Test Mode	Mode 2, Mo	ode 3		Pressure	1008mbar		
Input voltage	AC 230V/50	OHz, DC		Test Results	Pass		
Test engineer	Sam Chen		.or.14			.or.19	
Port under test	Coupling	Test Level & polarity(kV)	Phase angle (°)	Number of surges	Repetition rate(s)	Performance criteria	
AC Input power	L - N	+ 0.5	90	5	60	В	
AC Input power	L - IN	- 0.5	270	5	60	В	
AC Input power	L - PE						
AC Input power	N - PE						
AC Input power	L&N - PE	(4) 测股份		人:加股份		Salina V	

Note:

份

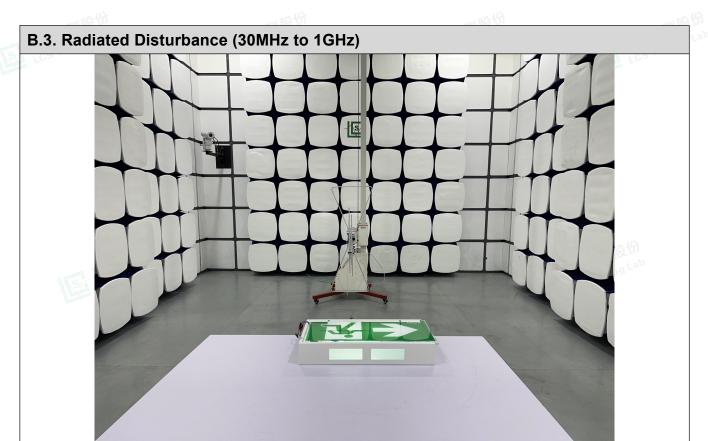
工校测股份	四檢測股份			可检测股份 20	
VOLTAGE DIPS AND SHORT INTERRUPTIONS IMMUNITY TEST RESULTS					
Standard	⊠ EN 61547:2009			⊠ EN 61000-4-11	
EUT	LED exit emergency light			Temperature	23.9℃
M/N	DS-EL-01M			Humidity	52%
Test Mode	Mode 2			Pressure	1008mbar
Input voltage	AC 230V,50Hz			Test Results	Pass
Test engineer	Sam Chen				-044
Unom (Vac)	Test Level (% Unom)	Number of periods 50Hz 60Hz		Phase angle (°)	Performance criteria
230	70	10	12	0, 90, 180, 270	С
230	0	0,5	0,5	0	В

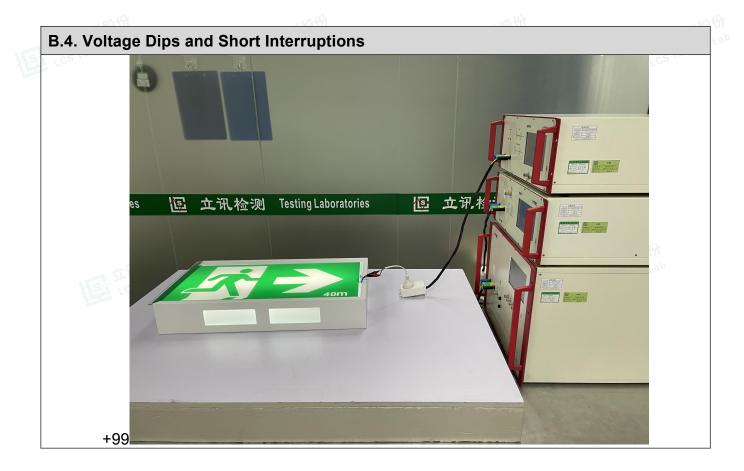
Note:



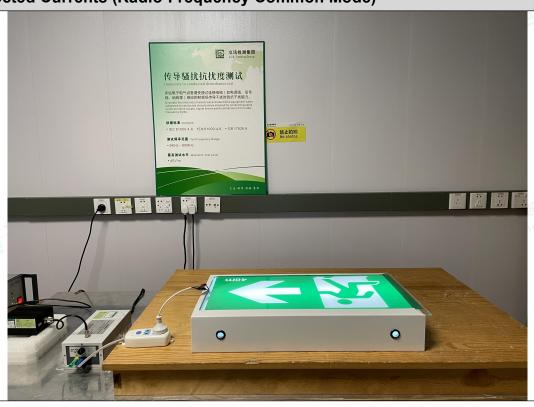
ANNEX B - TEST PHOTOS

B.1. Conducted Disturbance at electric power supply


B.2. Radiated Disturbance (9kHz - 30MHz)



Shenzhen Southern LCS Compliance Testing Laboratory Ltd.


Scan code to check authenticity.

-mi BB 份

B.7. Injected Currents (Radio-Frequency Common Mode)

B.8. Surge

ANNEX C - EXTERNAL AND INTERNAL PHOTOS OF THE EUT

The photographs show the equipment under test.

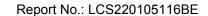

Figure. 1 DS-ES-01S

Figure. 2

Shenzhen Southern LCS Compliance Testing Laboratory Ltd.

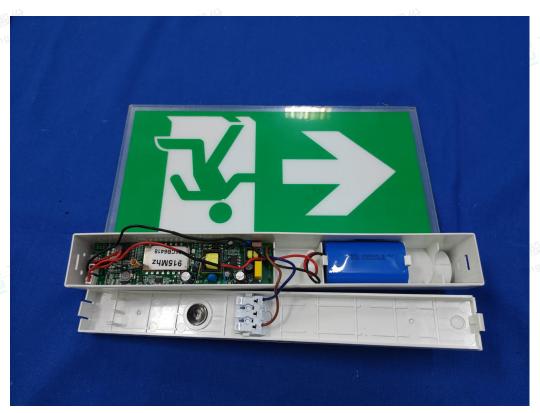


Figure. 3

Figure. 4

Shenzhen Southern LCS Compliance Testing Laboratory Ltd.

101-201,No. 39 Building, Xialang Industrial Zone, Heshuikou Community, Matian Street, Guangming District, Shenzhen, China. Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com.

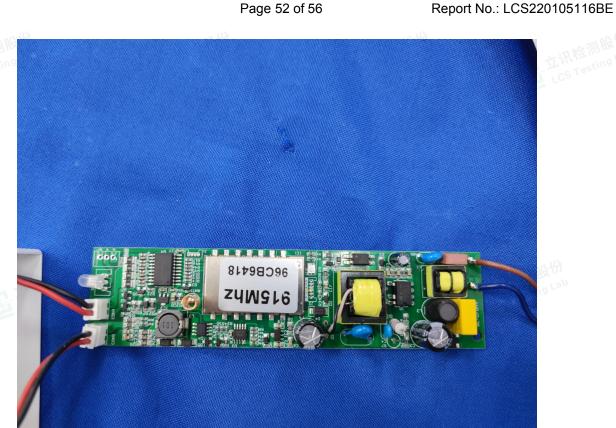


Figure. 5

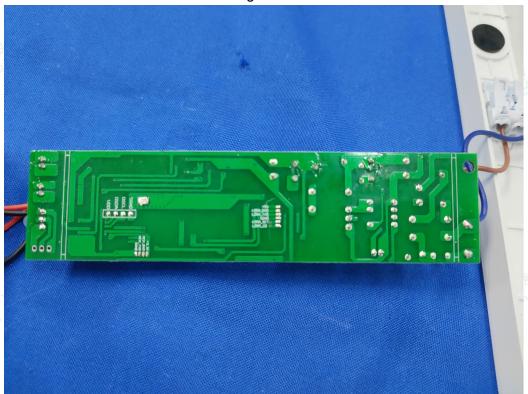


Figure. 6

Shenzhen Southern LCS Compliance Testing Laboratory Ltd.

101-201, No. 39 Building, Xialang Industrial Zone, Heshuikou Community, Matian Street, Guangming District, Shenzhen, China. Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com.

Figure. 7

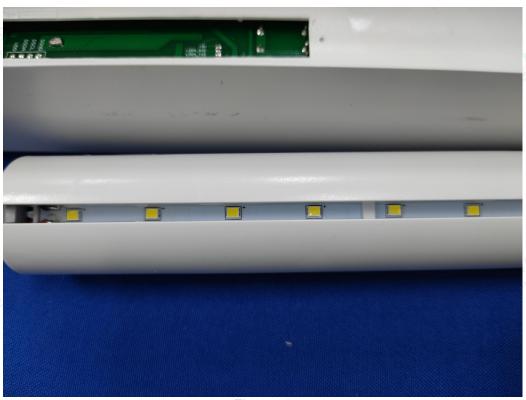


Figure. 8

Shenzhen Southern LCS Compliance Testing Laboratory Ltd.

101-201, No. 39 Building, Xialang Industrial Zone, Heshuikou Community, Matian Street, Guangming District, Shenzhen, China. Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com.

Figure. 9 DS-ES-02S

Figure. 10 DS-ES-03S

Shenzhen Southern LCS Compliance Testing Laboratory Ltd.

101-201,No. 39 Building, Xialang Industrial Zone, Heshuikou Community, Matian Street, Guangming District, Shenzhen, China. Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com.

Figure. 11 DS-ES-04S

Figure. 12 DS-ES-05S

Figure. 13 DS-ES-06S

IST LOS Testing Lab

150 立讯检测股份 LOS Testing Lab

LCS Testing Lab

----- END -----

拉洲检测股份 LCS Testing Lab TET 立讯检测股份 LCS Testing Lab

